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An Analysis of Physical Optics Models
for Rough Surface Scattering

1. INTRODUCTION

There are a large number of approaches to the calculation of the electromag-

netic scattering from rough surfaces. ! ™6

The importance of these techniques
rests in their relevance to the determination of the effects of the real environment
on radar and communications systems. The analyses contain certain assumptions

about the nature of the rough surface in relation to the electromagnetic phenomena.

(Received for Publication 18 September 1984)
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Particular emphasis has been placed on the characterization of the surface in
terms of the statistical distribution of the heights, their degree of correlation

(T is the surface correlation length), the variance of heights 02, and a complex
7,8

RO ] Il

dielectric constant representing a particular terrain type. These features are

o

then related to a normalized radar cross section for the terrain through an elec-
9,10

-

K
N
.

o

tromagnetic analysis. One of the most frequently applied approaches is that
of physical optics.

In this report, we will discuss several topics related to the use of a physical
optics scattering model. These are the limitations and constraints that are in-
herent in the application of such a model, the range of validity of the analyses,
how different representations of normalized cross section ¢° have to be introduced
for different parameter ranges, and the effects of these different representations

of the normalized cross section9 on the calculation of the diffuse scattered power.

2. THE CONDITIONS FOR PHYSICAL OPTICS

Over the years, the arguments to support the validity of physical optics have
centered around the use of the Kirchhoff integral representation for the scattered
EM wave, where the boundary conditions on the surface have been satisfied
through the use of the Fresnel plane wave reflection coefficients. The boundary
conditions are met by specifying the total field on the rough surface as the sum of
an incident field and a scattered field. The scattered field is expressed as the
product of the incident field and the Fresnel plane wave reflection coefficient. The
use of the Fresnel plane wave reflection cocfficient is justified if the local radii of
curvature on the rough surface are large compared to a wavelength (Rc>> A). We
wish to relate this constraint to more readily handled surface parameters.

In Ulaby et a111 there are two conditions given for the validity of the Kirchhoff
approximation: kT > 6 and T2/o> 2.76 1, where k = 27/)x, A = EM wavelength,

7. Papa, R.J., and Lennon, J.F. (1980) Electromagnetic scattering from rough
surfaces based on statistical characterization of the terrain, International
Radio Science Symposium, (URSI), Quebec, Canada.

8. Papa, R.J., Lennon, J.F., and Taylor, R.L. (1980) Electromagnetic Wave
Scattering From Rough Terrain, RADC-TR-80-300, AD A098939.

9. Papa, R.J., Lennon, J.F., and Taylor, R. L. (1982) Further Considerations
in Models of Rough Surface Scatteripg, RADC-TR-82-326, AD A130424.

10. Papa, R.J., Lennon, J.F., and Taylor, R.L. (1983) Multipath effects on an
azimuthal monopulse system, IEEE Trans. on Aerospace and Electronic
Systems, pp. 585-597.

11. Ulaby, F.T., Moore, R.K., and Fung, A.K. (1982) Microwave Remote
Sensing, Vol. II, Addison-Wesley.
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T = surface correlation length, and o = standard deviation in surface height. In
the present report, it will be shown that a single condition (T >> )) is sufficient
for the validity of physical optics. It will be shown that for a rough surface with
a Gaussian correlation function, T>> A implies that the radius of curvature R,

must be large compared to a wavelength (RC>> ). Thus, the second condition

given by Ulaby et a.l1 1 is redundant.

21 Magnetic Field Integral Equation

To clarify some of the implications in the use of physical optics concepts we
follow the treatment of Brown® who starts with the magnetic field integral equation
for the current J s induced on a perfectly conducting rough surface by an incident
magnetic field |l

+ o o o 1/'.._ - e g =
T = 2nx H@) + 52 J ) X[IF) XT, g -1 Dias (1)
o

where n is the unit normal to the rough surface, S is described by z, = E(xo,yo),
and g(Ir - Fol) is proportional to the free space Green's function:

g(lr - r0|) = exp (iklT - ro|)/|r - rol

where Fo is the vector from the origin to a point on the rough surface:

To=X U+ Yoy * z u,. Also, £(x,y) is the surface height (a random variable),

o
and Ex = 98/dx and £ = 9£/dy are the x and y components of the surface slope.
Br'own12 has indicated steps that transform this expression into a new form

that can be analyzed to arrive at a sufficient condition for the validity of the physi-
cal optics model. The details of this expansion are presented in the appendix. As
a result of those operations we arrive at a new integral equation describing the

current:

)
. 1\'n [ .. . ~ - — -
;1_2(2—,;) / qu(BI.B’z.---En)lpl(kl -8 Ky - By K -8

- T (Byak By kg, )1 dB) e dB‘n

[+

ic9@ > - i
iey ak‘zy]pl(kl kigo Koooon ko (2)

|
x
~

z

= q._.; .9
2Ho[c iel3p

2x

12. Brown, G.S. (1983) Private communication.
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tion factors,

n R
= Z i » :":'--:"

i=1 ST

Here, H_ = amplitude of the incident magnetic field, cg, cg, and cg are polariza-

and ;1 is the stochastic Fourier transform of the single point probability density
function (pdf). The current is represented as

—_

Iq © jqexp{il?it- Ft} for q = x, y.

Here k1 2, . k and Bl, BZ’ v En are stochastic Fourier transform variables.

[PYSY VU T T S

Also, kit is the transverse part of the incident wave vector and ;t lies in the e
x-y plane. The details of these equations are presented in the appendix. The
particular term of interest in this expression is l“2 (k1‘61'§2’ l_{z, RN }?n ). S
g ERAERE
r (Bl,kl.Bz S
= . 4
dEerys) e deRege L L .
+ gelor,, ER

(2”) ' 25x 8k2x o) Ay akzy E' t" "o
X py (ky =B, By ~By. Ky, o kexp(ik, * OF,)dAT, a8 '
t T
(3) P
L A

Here, Eand Eg are the Fourier transforms of the Green's function and its deriva-

o

tive respectively and ;2 (...) is the stochastic Fourier transform of the two point "

.
«

pdf. The significance of F2 is that under the condition that this term vanishes

5.

(F2 - 0) the integral equation then yields the physical optics result (for a perfect
conductor) for the current density: o
=i

Js =2nxH

¢

,‘." 1 I'I‘ .
b A AL

Thus we can determine a sufficient set of conditions for physical optics in
this instance by determining a set of conditions that causes I“2 - 0. The object o
is to relate dimensions of the surface to the wavelength of the incident field and
in this context we will show that the condition T/A - « is a sufficient condition for -,
F2 - 0 and hence for physical optics conditions to prevail. B
Since I‘2 is such a complicated expression we simplify the analysis by exam-
ining the type of behavior expected for various elements of the I“2 integrals. The ._.
first term that we wxsh to consider is p2( .), the two point stochastic Fourier : A
transform. Brown® has given expressions for p,(€,£ ), v§, vE, .VnE.vnEo) and _‘.':-.‘_’.4-._,

-
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gz(kl. Bys Ez. Ez. .--» k., B ) and we will use these relations in assessing the j’:;
behavior of the multivariate distribution under the transform operation. '.‘ —
First, we define 7' =7/ = V(Ax)2 + (8y)2/x and T' = T/A. We restrict our T ]

analysis to the case where the surface correlation function, R(r') is Gaussian

Rér') = o® exp [~ (+"2/(T"? ]

In addition, the two point probability density

PylE.E , VE. Vo Eo, VOE, .., VU8, VOE ; V)

is Gaussian with zero-mean variates.

Next, we consider the quantity

(E&) =Rt =0 exp [- (+22/(TV) . o]
Also, .
a a 1 a ] | - 1 1] p '
(Eo__g> =27 l(t._) = (i_ﬁ) - 272 R(+") . ]
ax ax o7 7! (T" o
In the limit when T' - w0, (£ 2—E-) - 0 and hence, (§_ -9 &) ;. 0 ]
' o 9x ’ (o] lim . T
T's» ST
Similarly, we have that ( § - Vog o)lin—; 0. We continue this evaluation for higher ) . N
T'+w . e
order derivatives. o 4
3%, _ 23 [x' -x\ (21 2R(7" | 4(x' - x5 )2R(7") R

(§, =) = —|—=2 [—==]| Rz = - + ] -

ax ax'| 7' (T2 (T2 (T} S
This expression - 0 as T' ~ « so that (§ V2§) - 0 and (§V2§ ) -0 ~. 4
o lim o 0/ lim ' . 1

T'»0 T'+o0 -
In similar fashion we can show that the general cases are SRR
n n m, _n S o
BV ) 1im™ 0 (§9585) 1im™ 0 and(V Evogo) lim™ % LA
T'+w T'>o0 T'+00 ‘ ;

.®

In Brown's formalism, the expression for 52 when I 1
n n
Py(E.€ ,VE, VE, . . ., VE TE) RN
is Gaussian is R
ok, - B . B_-B,, k,, - B. ) = [-(\—ITE\'/)/zl SRt
Py 18y " Por Po 1" "2 2+ cc) = EXP 27272 ’ .




where

ky - B,
Bo_Bl
g . k.
V2- ,-‘2
"2
L 4
and C=‘.2 is the covariance matrix
g2y (EEo) (5-98)
: (EE) (E2) (Eo VE) ®
Cy = | (VE-ED (VE- &) ((vE)2)

(V55 EY (V8 6 (V5. VE)

L
This form of the covariance matrix obtained by Brown is a general one. For our -
case with a Gaussian form for the correlation, we obtain the simpler form for the _
matrix ‘.
a? R 0 0 0 ] e
R o2 0 0 0 T
= 0 0 0 0 B
G = 0 0 0 0 L l
L 4
L ] g
by substituting our previously derived terms for the derivatives as T' - . ° ) k
R
*
1
6 ]
o ]
]

-1
1
Ry
Rl
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such that the Rayleigh parameter, £ = 3. For smaller values, the Taylor series ) 1
representation for ¢° is accurate and should be used for calculating the bistatic - f
clutter power. L Jl

If the Rayleigh parameter dependence of the cross section is taken into ac- j
count and surface shadow regions are included, then these results indicate that
physical optics principles can be applied to analyze electromagnetic scattering R
from surfaces with an extensive range of roughness conditions. T
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and surface parameters are such that the Rayleigh parameter Z = 3.0. For
smailer Rayleigh parameters, the Taylor series representation for o° is accurate -
and should be used for calculations of clutter power.

S. CONCLUSIONS

In this report four major topics have been studied. The findings for each are
summarized here. The first topic is the investigation of the conditions under .
which a physical optics model of the scattering from a rough surface is a valid N - -
representation. The investigation proceeded from an analysis of the magnetic 4
field integral equation for the current density on the rough surface. For a surface -
with a Gaussian surface height distribution and a Gaussian surface correlation .
function we have demonstrated that only one sufficient condition is needed in order
that physical optics be valid for calculating EM wave scattering from the rough
surface. This condition is that the correlation length T be much greater than a
wavelength. ]

The second consideration of the report is to relate that constraint to the al- » 4
ternative condition that the radius of curvature of the surface irregularities be :
large compared to the wavelength. The analysis involved the same restrictions of
Gaussian surface heights and surface correlation function. For our condition

(T/Xx —+ x ) it was shown that the consequence of these assumptions is that the sur-

face slopes and slope derivatives are statistically independent. The conclusion
that follows from these arguments is that T >> ) is always a sufficient condition
for RC >> x and for most cases it is also necessary.

In the third topic we have addressed the question of the form of the scattering
cross section that is present in the physical optics representation of the scattering.
In the report we have shown that, despite the constraint on surface correlation, the
surface can be described by a wide range of values of the Rayleigh roughness
parameter. Typically in radar engineering, the asymptotic form for the cross

section is used in scattering calculations. Here we have shown that different rep-

resentations for the normalized cross section ¢° must be used, depending on the
magnitude of the Rayleigh roughness parameter. Explicit representations for o° ’ p
have been given for small, intermediate, and large Rayleigh roughness parameter
when the surface is described by either a bivariate Gaussian distribution or a bi- ' )
variate exponential distribution in height.

Finally, we examined the effect of using the different representations for ¢°
in determining the diffuse power scattered in the forward direction by a bistatic
radar system. The conclusion is that the conventional asymptotic form for o°
gives accurate results (+ 1 dB) only when the system and surface parameters are

19
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contribution for two strips have been evaluated, one close to the transmitter and
the second at a distance from it. These comparisons show the effect of =2 on the
three types of power calculations as a number of parameters are allowed to vary
widely.

In calculations of radar clutter contributions from Gaussian surfaces, the
asymptotic form of ¢° is conventionally used. Examination of the results of this
table indicates that the asymptotic form (physical optics plus steepest descent

evaluation of integral) for o° will give accurate results (+ 1 dB) only if the system

18
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Table 3. Diffuse Scattered Power for Different ¢° Representations S
)
Antenna 2 Strip 2 Diffuse Scattering . L
Separation o Distance z Power RS
.. ‘..*‘Q‘
92 km 1m 10 m 531. PDIFF =17.52.10-13w 1
PDIFFI =7.57.10-13w R
PDIFFX = 2.1.10-113w RN
’
1 km 6.67 PDIFF = 3.88.10-12w o
PDIFFI = 4.16.10"12w 4
PDIFFX = 4.16.10-12w 1
4 km 0.795 PDIFF =1.09.10-12w
PDIFFI = 6.75.10"13w _
PDIFFX = 6.75. 1013w » b
- <
46 km 0.4 PDIFF =17.28.10-15w
PDIFFI = 4.41.10-15w
PDIFFX = 4.41.10-15w )
10 m2 46 km 4.3 PDIFF = 3.65.10-14wW '
PDIFFI = 3.52.10-14w - 4
PDIFFX = 3.52.10-14w ) }
0.5m2 | 46 km 0.2 PDIFF = 5.53.10-15W KRR
PDIFFI = 2.27.10-15W S
PDIFFX = 2.27.10-15W e
0.1m? | 46 km 0.04 | PDIFF =2.67.10-16W NPT
PDIFFI = 4.67.10-16w
PDIFFX = 4.6%.10-16wW
10 m? 10 m 5308. | PDIFF = 6.75.10-12W
PDIFFI = 6.75.10-12W
PDIFFX = 2.08.10-112w
9 km 10 m 10m 6663. PDIFF = 3.04.10-9W
PDIFFI = 3.04.10-9W
PDIFFX = 2,08, 10-113w -
1 km 328. | PDIFF = 3.62.10-13W RIS
PDIFFI = 3,63.10-13W
PDIFFX = 2.08.10-113w e
o
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4. EFFECT OF ¢° REPRESENTATION ON DIFFUSE SCATTERED POWER

In this section, actual quantitative comparisons will be made of the diffuse
power reaching a receiver (see Figure 1), where the different representations for
o° have been used, as discussed in Section 3. Because the computation time was
prohibitive when the total diffuse power was calculated by integrating over the
entire glistening surface (especially for the integral representations for ¢°), we
consider only the diffuse power reaching the receiver from selected strips of
ground 20 m wide and parallel to the y-axis.

The effect of integrating across the surface can be seen in the results shown
in Table 3. For o = 1 m2 and an antenna separation of 92 km, we show the in-
dividual contributions from strips that represent a wide variation in position along
the distance axis. We are concerned with the effect of the Rayleigh parameter Z
on the various representations. There are two main factors constituting that
parameter, 02 and scattering angle. In the table, P results are obtained, where
both of these factors are allowed to vary separately. The results presented here
are for a receiver height of 2500 m, transmitter height of 100 m, transmitted
power of 350 W and vertical polarization. The surface heights are taken to have a
Gaussian distribution and a surface correlation length T = 5 m. For all cases, we
show the three different diffuse power levels calculated using the three represen-
tations of g°: PDIFF corresponds to the asymptotic form; PDIFFI is the numerical
evaluation of the integral; and PDIFFX is the result for the power series repre-
sentation.

There are three basic comparisons in the table. First, for a separation of
92 km and 02 =1 m2 the effect of x? is shown as the distance of the scattering
strip (scattering angle) is varied. Next, for the same separation (92 km) and a
fixed strip position (46 km from the transmitter) =2 s changed by varying o’

(0.1 m25 025 10 m2). Finally, the table shows a comparison of results for

o? - 10 m2 at two antenna separations (9 and 92 km). At both separations the

PULSED RADAR BEACON DIRECT SIGNAL
.\\‘\\\‘~‘ MONOPULSE RECEIVER
~ SPECULAR MULTIPATH
DIFFUSE \ /
MULTIPATH

ROUGH TERRAIN

Figure 1. Rough Surface Scattering for a Bistatic Geometry
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Table 2. J° Values Calculated Using Different

Representations
J° for Bivariate Gaussian
=2 | POWER EXP. | ASYMPT. | INTEGRAL
96 1.0E -13 7753 7807
20 7323 7753 8018
10 8300 7753 8298
1 3850 7753 9931
J° for Bivariate Exponential
=2 | POWER EXP. | ASYMPT. | INTEGRAL
ag 9881 9850
10 155779 9881 9985
1 7753 9881 3735
0.1 al 9881 85

The results of this table may be summarized as follows:

(1) Bivariate Gaussian Surface: :‘_,_.
(a) For large Rayleigh parameters (.‘-‘2 = 20), both the asymptotic and ;w—-—«
integral representations are accurate and agree to within a few percent. R |

(b) For intermediate and large Rayleigh parameters (22 =>10), the in-
tegral representation is accurate (for small £ values the numerical integration
may have oscillation problems).

(¢) For small Rayleigh parameters (22 =< 10), only the power series
expansion representation is accurate.

(ii) Bivariate Exponential Surface:

(a) For large Rayleigh parameters (.‘.‘.2 = 20), both the asymptotic and

integral representations are accurate and agree to within a few percent.

(b} For all values of the Rayleigh parameter, the integral representation

®
1s accurate )
(¢} For small values of the Rayleigh parameter (.‘..‘2< 1), the power
series expansion representation is accurate and agrees with the integral repre-
sentation to within a few percent.
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Brownl'7 has identified JD as the incoherent power scattered diffusely, and

JS is the incoherent power scattered in the specular direction (vx =v_=0). The
four-fold integral given in Eq. (9a) can be reduced to a single integral if T <<X,Y,

just as was true for the Gaussian case. The result is

[>e]
Ip = %)(2#) JEX=S Hl +2 20 -ctn )2 - (143 22)'3/2]7 dr
° (10)
2 o . D -
For large and small values of 2, Js * 0 soJ° =J . For large Rayleigh para-

meters (22 > 20), a steepest descent evaluation of the integral in Eq. (10) yields
the asymptotic expression for JD:

2, .2.,1/2
;o124 exp| VBT ("x*"1 ' (11)
D A222 20 \ v2
z
where v, = - (27/ 2 cos f; + cos OS). For intermediate values of 22, the integral

has to be evaluated, and in general, JS #0soJ° = JD + Js. For small Rayleigh
parameters (22 < 1), the following expression [from a Taylor expansion of the
integral in Eq. (10)] can be used:
2 2
2 -v, T
JD=(4L) 2272 exp| —X¥ ) (12)

12 4

3.3 Comparisons

To demonstrate quantitatively the accuracy of these various representations
for J° as a function of the Rayleigh parameter squared (22), Table 2 was con-
structed. This table shows J*® values as a function of P using the different rep-
resentations. Here, POWER EXP. refers to the Taylor series expansion repre-
sentations [ Eqs. (8) and (12)], ASYMPT. refers to the asymptotic representations
{Eqgs. (7) and (11)], and INTEGRAL refers to the integral representations [ Eqgs.
(6) and (10)]. In these tables, the variance in surface height 02 = 10 m2. the cor-
relation length T = 15 m, and the azimuthal scattering angle ¢s = 0.5°. It should
be noted that, since we are concerned with differences between solutions, the
values shown for the intermediate exponential solutions are actually values for JD

since JS would be nearly zero for all methods.

17. Brown, G.S. (1982) Scattering From a Class of Randomly Rough Surfaces,
Radio Science 17:1274-1280.
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Next, we consider the evaluation of this expression for different z? regimes. If :

Z>> 1, a steepest descent evaluation of the integral in Eq. (6) reduces it to the ."';“4

asymptotic expression familiar to radar engineers (Barton and Wardls): : ._J
2 2
2,2 -v_. T

J° = 4; g exp X‘Yz 7)
Az 4z

In the intermediate case, the integral has to be evaluated explicitly. When the

Rayleigh parameter is small (22 < 10}, the following series representation can

-
alaaa

be used
2 2 - b
2.2 2 2 2m i T )
o_ (42T -z z Xy !
J ( RZ ) € Z (m-m?) €*P 4m ) (8) R
m=1 1

e

N " DI
L Ce “u

3.2 Bivariate Exponential Solution

The preceding results are all for Gaussian distributed surface heights. For
the case where the surface heights are described by a bivariate exponential the

four-fold integral appearing in Eq. (5) may be written as follows:

o . .-

AP SO V)

J = Jo"’Js , (9)
!.
where
x x y v R
- 49 1 . . - . _ N
-x -x -y -y s
¥
x[xz-xz(-r_.m)] (9a) L
and

4r

-/ -
Jg = (;2-)(4XY) sinc? (VXX)sincz v, V[ (1 +-§-:2) 372 4L x2)3

(1++ ] (%b) )

Since this is for an exponential distribution, the bivariate characteristic

function for uncorrelated variates used in Eq. (9a) and Eq. (9b) has the form

2.,-3/2
K glr =) = (14 (2/3) 277/ v
16. Barton, D.K., and Ward, H. R. (1969) Handbook of Radar Measurement, L
Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1
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® = 21,
o Iqul J
| 12] = X y y
| ™Bpq . .
) XY X fdxl dez del de2 exp [iv, (X, -X5) + wy(Y1 -Y,)]

x X -y -y
XXy (5, T) = x] (B)x, (D)

Here, B__ are the matrix elements for linear polarization states (see Ruck et a12),
the rough surface has an area 4XY, and

T = Surface Correlation Length

vy =(2#/M[sin6; - sin 6 cos ¢,]

vy = -(27 /) sin 8 sin ¢s

X, = univariate characteristic function of the surface height
distribution function,

Xg = bivariate characteristic function,

Z = Rayleigh roughness parameter,

= (279/) (cos 6; + cos 6,)

The forms assumed by X4 and X for Gaussian surface height distributions
and for exponential surface height distributions have been derived previously. 9
1 On the
other hand, for a surface described by a bivariate exponential distribution function,
Xy (7 =) = {1+ (2/3) =2, 73/2

to reduce the four-foid integral to a single integration is T <<X,Y. This criterion

For Gaussian surfaces, xz(-r - ) =exp (- 22) and x, (1 >x)=x X
and x, (7 ~x)# x 12X - The only condition needed

does not depend on the Rayleigh parameter but there are differences in the result-

ing forms for the twc surface distributions.

3.1 Gaussian Solutions

For the Gaussian case, we have:

2 = .
o 8 *
J° = -—7’2— fJo(vxyT)[\Z SN \y)Tdr , (6)
A o
where
_ 2 2
vxy = vx+vy
13
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hence in that range T >> X - R >> 2 and Rc >> A+ T > A, Thus, T>> i is
both necessary and sufficient for R,>> 2 when we have intermediate o/ T values.

To summarize the above results, we can say that, under our assumptions of
independent slope and slope derivatives, for a Gaussian surface and Gaussian cor-
relation function, T >> X is always a sufficient condition for R , >> A, and for
intermediate and large slope conditions, T >> A is both necessary and sufficient
for a physical optics solution to apply.

2.3 Shadowing

There is a final aspect to the relationship between roughness and physical
optics. It is well known that as the average surface slope becomes large (0/T= 1),
shadowing becomes more and more important. Then, the physical optics current
density J=2tnxH i) does not truly hold everywhere on the surface. For large
slopes, the correct current is obtained by multiplying the ¢° resulting from physi-
cal optics by a shadowing function S, which describes how much of the surface is
unlit, that is, where J - 0 in the shadow regions. At present, this shadowing
function has been derived rigorously only in the high frequency geometrical optics
limit (x - 0), 14+ 19

3. NORMALIZED SCATTERING CROSS SECTION

Previous reports and papers7_10 discussed how a general expression for the
normalized cross section 0° may be derived from the Kirchhoff integral expres-
sion for the waves scattered from a rough surface. In the present report, a brief
outline will be given for the determination of o° for different regimes of the Ray-
leigh parameter. The actual evaluation of the four-fold integral depends upon the

surface height distribution function. The general expression is

14. Sancer, M.I. (1969) Shadow -corrected electromagnetic scattering from a
randomly rough surface, IEEE Trans. Antennas Propag. AP-17:577-585.

15. Brown, G.S. (1980) Shadowing by Non-Gaussian random surfaces, Proceed-

ings of the Second Workshop on Terrain and Sea Scatter, George Washing-
ton University, Washington, D. C.
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Thus, T>> X is both necessary and sufficient for R >> X when o/T> 1.

In the intermediate range of X the limiting case forms do not apply and the
function U(1/2, 0, X) must be evaluated explicitly. The procedures for evaluation
are outlined in Abramowitz. 13 To see how Rc varies in the intermediate X range
we consider several cases as 10.0 =X =0. 1. Over this range, 1.5 =(0/T) =0. 16
and the evaluation of U(1/2, 0, X) leads to the result that 0.5T =R_=2.5T. In
the earlier report we evaluated R c under the assumption that

1+293/2\ s 2.2)3/2) 1+ (2?32
< 22172 S(Vyr) Voo y

If we compare results of that early approach to those of the present case for inter-

mediate slope conditions we see that for-o/T < 1 the results are in reasonable
agreement while they diverge for /T > 1. These results are summarized in
Table 1.

Table 1. Results for R in the Intermediate Range of o/T Values

X o/T (K] R Previous R,
10 0.16 0.4/T 2.5T 1.97T

3 0.3 0.5/T 2.1T 1.2T
1.6 0.4 0.7/T 1.5T 1.1T

1 0.5 0.9/T 1.1T 1.1T
0.5 0.7 1.1/T 0.9T 1. 15T

0. 0.8 1.3/T 0.8T 1.24T

0. 1.5 1.9/T 0.5T 2.7T

It should be noted that in a strict sense the regions of X and o/ T are not
equivalent. For instance o/T = 10 - X = 0.0025, which is well into the small X
approximation and similarly ¢/T = 0.1 - X = 25, which is in the large X solution
region. Equivalently, for 0.1 = X = 10 we have 1.5 = o/T = 0.16. Thus, for
completeness we should examine the small X solution for 1.5 < o/T =< 10 to com-
plete the examination of how Rc behaves for intermediate o/ T. For that range
Rc = 0.6T. Similarly, for 0.16 =2 ¢/T =2 0.1 we have 2.3 T = Rc =< 3.6T. Thus

over the entire range of intermediate o/T values Rc is of the same order as T and .j'::":‘;-'_'.'.
- 92 il
13. Abramowitz, M., and Stegun, 1.A. (Ed.) (1964) Handbook of Mathematical s

Functions With Formulas, Graphs and Mathematical Tables, NBS Applied coen

Mathematics Series No. 55.
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After some manipulation we obtain

w2
(IKly = ( 2<: ) (ﬂ—%a——?;)(q) U(::. 0, 0.5(z'2>'1)

= ( (2"%y /(2% 7r> U(% 0, 0.5(z'2>'1)

(Y olh 0 0sn )

where U(a,b, X) is the confluent hypergeometric function of the second kind with
X= 0.5 (2%

We now want to examine the relationships for various slope regimes. Recall
that (z'?) = 20%/T% and (2"%) = 120%/T®. Then, for small slopes (o/T << 1) we
have (2 (z' )_1—-00 and

"2 -1 1\ -1/2 n2
= (2™ f 12 . [2(z"%y _ 2.760
(1K1Y - ( (z )) (2<z'2>) - 2

for zeroth order and

2
<lK|> > 2_']':"276_0 1-3(1)

it

for first order.
Thus, we have a zeroth order solution for RC = ( —%— )

~

which is equivalent to the resuit obtained in Ulaby et al11 for small slopes. Then,

since 0/ T << 1 we have R_.> 0.36T and T>> ) (a sufficient condition).
1

For large slope conditions (o/T>> 1), 3 - 0 and
2 (2'")
. (2 n2 2 1 1
(1K])= (?) y=hi® + o (2<z,2>)“‘ (2-'<—z.—.))

=(-2_) 6 =1_'§
1r ;f T

so
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Since they are considering only small slopes, the curvature is considered to be a
function of just the slope derivatives. For our applications, though, we are con-
cerned with behavior for all surface slope magnitudes and therefore we cannot use
their simplified expression for the curvature. As a result, the analysis is more
complicated.

If we make use of the previously cited theorem, we can express the proba-
bility density function for the surface slopes as:

1 z'2
p(z") =(~/2_1r<(z')>172) exp {- 2(z'2) }

and for the slope derivatives

n2
P = [~ ) e |-
Var (2" 2(z")

P AL e

In the previous section we showed that, if the surface correlation length T' - w0,

* then the slopes and slope derivatives are statistically independent with (z'z") - 0.
S Hence, under our assumptions we can write the joint probability density p(z', z")
3

as

w

pz',z") = 2 1/2.} 2'1/2) exp 'l( z'z + L'z‘) :
2r (2" (2" 2 (2" (2"

Next, we rewrite the curvature magnitude as
|KI = Izu[ 1+ 2'2]'3/2| - |z||| I [ 1+ z,2]-3/2
Then for the expected value we have

(K] = j‘o |z |1+ z'2]'3/2] plz',z"ydz'dz"

~00 =00

Integrating over z' results in

Q0
(lKl\ = —2'(2"2\ (E_ﬁ)f [1+ z|2] -3/2 exp [ - 2'2/(2<z'2\)] dz'
L4 T zZ
[+]

T P PR R R Pt et ottt e e et e e e e e S P T S Pt SRR
. e e e e e R e e e I R RIRNLIN e e e e e e e e e
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R c is the average radius of curvature. This is the most generally used form for ::-__'-.
the autocorrelation since use of an exponential form leads to discontinuities at
small distances.

In a nrevious report by Papa, Lennon, and Taylor, 9 a derivation was given
for the mathematical representation of the average radius of curvature R o The
rough surface is described by the equation z = £ (x,y). The average slope is given

b .
y »
(2« [ (22 22\ M2 a
9x 0x ! MU
where ( ) denotes expectation value. The average radius of curvature Rc of a E -
curve is given by -
[
R, - A - [+ 2?] 32 '
¢ (IK]y z"
where K is the curvature. The average of (z')2 is given by
9 ]
N2 _ /9E BEN\ _ _ 8°R(T=0) _ 20° -
((Z ) > = _— = - ’T—‘— = —2 .
9x 9x 9T T
Also, the average of (z'? is given by -
;....
o . 3YR(T=0) | 120° o
{z'")%) = 73 = Y o
T T

The results are consistent with the theorem from random processes that states
that the distribution of the derivative of a normal process with zero mean and

variance ¢° is again normal and the variance of the derivative is

02 = -02 p'' (0) .
This theorem will be used by us to examine the relationship between the radius of .'_'~'.‘
®

curvature and the correlation length in physical optics models.
Ulaby et al11 examined this relation for the case where the slopes are re-
stricted to the condition that (z')z << 1. They obtain the result that

T e e LT L Te JTe e

ST e e e e e T e T - e T e T T e e T T T s T T e e T e T T e e
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Using this simplified matrix, we obtain the result that in the limit as T' —+

52“‘1 < By By = Bge Koy - By.-n)

k
>
.

2
~ exp [~ 5 {(k) -B ) +2(8 - B )k, - B) o + (B -B? }]
o4

These results now allow us to examine the individual terms of l"2 in Eq. (3).
Since 52 is independent of k, in the limit as T' - w the terms

(ag(Art, ﬁo) apz and (ag(Art. Bo) ap2 vanish. To examine the final
9 Ax 7 k2x by ] k2y

term, we reformulate the integration as

L fff[gﬁog(i)exp[- iB,51p, X

k. ox k. Oy
. 1X
exp[lk(')(—k—o-wr— + 'EIOXT" )]dAdiydBOdE ,

and make an asymptotic evaluation of the Ax and Ay integrations, using the
stationary phase method with k(') = koT - o . This leaves a double integration in
£ and Bo. The Bo terms in the integrand that results from the asymptotic evalu-
ation are a standard form so that the entire process then reduces to a single
integral in the complex §-plane. Careful analysis of the appropriate contour
integration shows that the integral reduces to zero. The final result of this
analysis is that for T/x —+ o, [y - 0. This implies that Eq. (2) reduces to

a1 . ~ .0 aY

27 qu(Bl)pl(kl BpdBy = 2¢c)p (k) -k ) @)
with @ = x or y. The solution of Eq. (4) is given by the result

jq(z) = 2H, cg exp (ik,, &), which is the physical optics current. Thus, T/X -

implies that the current density on a rough surface is given by the physical optics
result [J = 2n ¥ H') (for a perfectly conducting surface).

2.2 Relation Between R c and T/ )

We have derived the physical optics current from the magnetic field integral
equation using T/X -« . We next show the relation between this condition and the
basic condition for physical optics, namely that R_>> ). We will show that for a
rough surface with an autocorrelation function R = 02 e""z/Tz, where
T = [(xl - xz)2 + (yI - y2)2]1/2, the condition T >> X implies R_>> x, where
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Appendix A

An Analysis of the Magnetic Field Integral Equation

BrownAl has outlined how a general expression of the magnetic field integral
equation for the current Es induced on a perfectly conducting rough surface by an
incident magnetic field Hi can be expanded into a form that will allow us to analyze

conditions sufficient for a physical optics model to be applied to the scattering

from a rough surface. The details of the analysis are presented here.
The current is given by:

T s P 1 - - - - - = :‘

LE = wx @@ 4 gn RO x 176 x vz (7 -5 hres, (A1) y )
Sy : ~
=
where 10 is the unit normal to rough surface S0 described by z, = §o(xo. yo) and ‘
g(IF - ?ol) is proportional to the free space Green's function:

_ I 2 2 -1/2 >
n(r)=[-§xx-§yy+z][1+§x+5y] / .‘
g7 -F,1) = (exp k|7 - 7,101 (17 -7, 7" R
o o) o) ’
K J
» .

Al. Brown, G.S. (1982) A stochastic Fourier transform approach to scattering
from perfectly conducting randomly rough surfaces, IEEE Trans. Anten-
nas Propag. AP-30 (No. 6):1135-1144.
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where Fo is the vector from the origin to a point on the rough surface:

-

- - - - -
r_ = + + +
o = XUy t YU z_u_ and r, =xu +yu

y " "oz o y

Also, &(x,y) = z(x, y) is the surface height (a random variable) and §x = g?i-

and Ey -% are the x and y components of the surface slope.

To examine the terms in the magnetic field integral equation { Eq. (A1)], the
double cross product is expanded, the surface integration is converted to an inte-
gration over the z, = 0 plane through dS =(v'1 + 8,2‘0 + Eg,o)dx"'to and both sides of
the equation are multiplied by v 1 + §,2( + Eg, to give

76 - @x B + o (NG - 50 TE)
-(NE) - T ) g} dr, . (A2)
(]

where

T = (J 2 2 —

Jr) = (V1+ g+ 0T ()

R = / 1+ &2+ e2)n(r)
and

drto = dxo dy,

The current must always be tangential to the surface, so that

N(r) - .T(ro) =0
and therefore,

T Q) = &y JE)+E, TF) (A3)
o o

If Eq. (A3) is substituted into Eq. (A2), the result will give two coupled inte -
gral eq_\.xations for Jx(r) and J_(r). The equations will become uncoupled if the
term (N - J(ro)] vo'é in Eq. (A2) is ignored. This is equivalent to neglecting
cross polarization contributions to the current. These effects could be included
in the analysis but it becomes extremely cumbersome.

In general, the electric field in the far field may be expressed in terms of the
current density as follows:
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- kn - - - - a -
R S+ -
E = 1( 4”)g(Ro)ksxksfo(r)exp(xks r)drt , (Ad4)
where
rosxu tyuy iy,
ks = ksxux+ ll<Syuy+ kszuz
d?t=dxdy

N = impedance

and Ro is the distance from the z = 0 plane to the observation point.

The statistical moments of the scattered field (E_) and (IESI)2 can be deter-
mined from Eqs. (A2), (A3), and (A4), where () denotes an ensemble average. It
is possible to obtain an equation for the current ‘—fs in the Stochastic Fourier Trans-
form domain by multiplying Eq. (A2) on both sides of the equation by the Fourier

kernel

[+ o]
. ) = n
exp['lklﬁ-lnz=1 knyp " V&

and then averaging over all stochastic variables using the joint probability density
function relating all the heights, slopes, and slope derivatives. Performing these
operations on the left-nand side of Eq. (A2) yields the result:

aoC

(IFrexp(- k& - i > K, D

n=1
=1im(27r)'snf-- T FBuBor oo B
q'Ft Py Poe

n-—o0 n

xPl(kl-Bl, Ky ~Bys vt lrcn-Bn)dBldB:2 ... dB

n
where

n
s =2, i,
n ‘

i=1
= s e
r, xu, yuy )
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"?q is the Stochastic Fourier transform of Jq(?). g=xory and '51(. ..) is the
Stochastic Fourier transform of the joint probability density function (p d f). At
this point we have introduced the uncoupled current terms.

If the incident magnetic field of the surface is assumed to have the form
P - o - .
H(r) = H ny exp (+ 1kit I lkizE)
then the term 2q - [N X ﬁi] on the right-hand side of Eq. (A2) may be written
29 [N(E)x AMF)) = 2H {3+ e+ e | exp(+iK; - T, + ikizE)
a ol"z  "x°x  yy L "7t 1z

The polarization factors are determined by the direction r'fH of the incident mag-
netic field:

9 _ = ==
¢, =4a- (uzan)
‘q=__.. — -
Cy q (uXXnH)
q_-_. — -
cy- q-(uyan)

The Stochastic Fourier transform of this term may be written:

o0

(26- (N x ﬁi) exp| - iklg -i Z: En+1 . Vn£l>
n=1

. = =~ [a_.q3 _.qd S0 L oo
= 2H exp (+ik;, . T )|} ic, 3 ley ) 3 (k1 L R

t z 2% akzy 1 3
(A6)
where
ky = Koy Koy * Koy Koy
As before, neglecting the coupled term [ﬁ . .T(;)] VOE on the right-hand side oy
of Eq. (A2), the Stochastic Fourier Transform of the integral in Eq. (A2) may be L T
written: e
. h
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(f[- gx%)g(-o - gy%o*'gf;]‘]q(?to’&o'vo&o" )exp[—1k £ -1 Z Ko+
S [

X P2(§.€0.V§,V0§o. _

“l] I \
tO
o

.dexp [— ik, &~ Z kn+1 v

n=1

ag+

g1 G e ,vk
Féo]q t, "o’ oo’

)drto d¢ dE,o ce . (A7)

where P2 is the two point pdf of the variates. The &-integration can be written as
a convolution of the £-Fourier transforms of the Green's function derivatives and
Pz(. ).

By using the relations
g(Art.Bo) =fg(Art.E)exp(+iﬁoE.)dE

and

ag(Ar
(Ar B ) f( )exp(iBOE)dEj

—

and making the substitution A;t =r, - Fto' Eq. (A7) may be written

<f[-§x % -5y e +§§O]Jq(ao,§0.voeo....)

exp[
: 21r/ f[

[+ o]
- ik E - B (E - E) - Z K41 v“&}d?t())
n=1
=~ t' o

sglary, B,)  dglary, 8)
-
yoy,

xax

- g (Art, Bo)] Jq(rto, € Voo oo )

0
: : b n Iy
)(exp[-lﬁoéo*l kv §]P2(kl Byr Eor VE. T E
n=1

. )drtod;ﬂodgo. P

(A8)

where P, is the Fourier transform of Pz(. ..) with respect to .

2
The integration over S’o may be expressed as a convolution with a shifted argu-
2
The VOEO. A Eo' P
may be written as convolution with no shift in the argument, and the integrations
2
over VE, vg, .

If these transforms are performed, Eq. (A8) becomes

ment due to the exponential factor in Eq. (A8). integrations

may be written as simple Fourier transforms.
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-2-S, 3 g @ ~ A=
= lim (2x) i - i-a-‘- - gglar, ,8)
ninm . f f [ Yo 5k2y 3 rto 8 ]

X To(Fy Bye Agee--Bo)Byly B, 8,-8,. Ky, -B, .. ;AT )T dB B, ... oF,

A9
where (A9)

iy n
Ty Figr BB ) = [ [ 30160 Tkgr o+ T8

xexp[lBE iz Bnﬂ-v& ]dﬁ dv g, - .- v

00

and f’z is a double Fourier Transform with respect to both £ and Eo'

P (kl -Bo’ BO-B]_' kz, -Bz,..., Art) =ffP2(§:§°oV§a Vogon --';Art)
X exp [-i(kl'Bo)g'i(Bo'Bl)E -1 k n+1” V g
n=1
2 - n
+i Z Boe1 * vogo}dg dgodve dVoEo

The Stochastic Fourier Transform of Eq. (A2) may now be determined by
equating Eq. (A5) to the sum of Eqs. (A6) and (A9). With this and the substitution
Ar"‘t = ;t - Fto, the following result may be obtained:

lim
N-ec0 (2w)5n

[ S ToFp BBy BB By Ky By, KB )48 B, . 0B

= ol I S
= 2H exp (+ 1klt - ry) [cz ic

+1im (27)725n f f[ rtﬁo)%-i%ﬁ‘—;‘rt'ﬁo) 3k2y+5§m;t.ao>]

n-»o

x T, -aF, B By B

x Pylk, =B, B, - By» Ky -B,.. .. K, -B,, AT )dAr dB ... df. (A10)

n
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The first term of the right-hand side of Eq (A10) has a factor exp(+if€it- f:t).
This implies that the current may be written in the form

I (Fp By Bye o 2) = §g (B Byu ) exp ik + Fy)

When this is substituted into Eq. (A10), the following equation for jq may be ob-
tained

S
. 1 n . - ~ - s -
lim 3 ) ff Ji(Bl' By ...)[l"l(k1 B Ky =By .- kn-ﬁn)

n—oo

- Ty(B)s kys By, Ky, ...)]d31d§2 .. dB

"y -

9392 _ 192 B (k. -
gZHo[Cz iclap ic ]Pl(k1 ki ko, ... K.)

d 2% y 8k2y z’ 72 n

Here, the quantity I‘2 is given by

Tyl8,. ky» By Ky oK)

aglar,,8) @ 3g(AT,,B)

1 . t*Po . t’ Po ~ =

5 -i -i + g.(ar,,B)
(2”)2”[ 3B x ak,, ' 8By 3k, BTy Po ]

X .';-"2(1(1 - Bo‘ Bo -Bl, k2' ...) exp (ikit . Art)dArtdﬁo

This form of the integral equation describing the current is one that is amenable
to further analysis of its component terms. The term-by-term analysis leads to
determination of conditions for physical optics solutions.
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